This post describes how to build an interactive
pie chart with input data selector with
d3.js. See other pie examples in the
pie chart section of the gallery.
Watch out: pie chart is most of the time a very bad way to
convey information as explained in
this post.
This example works with d3.js v4
and v6
<!DOCTYPE html>
<meta charset="utf-8">
<!-- Load d3.js -->
<script src="https://d3js.org/d3.v4.js"></script>
<!-- Color scale -->
<script src="https://d3js.org/d3-scale-chromatic.v1.min.js"></script>
<!-- Add 2 buttons -->
<button onclick="update(data1)">Data 1</button>
<button onclick="update(data2)">Data 2</button>
<!-- Create a div where the graph will take place -->
<div id="my_dataviz"></div>
<!DOCTYPE html>
<meta charset="utf-8">
<!-- Load d3.js -->
<script src="https://d3js.org/d3.v6.js"></script>
<!-- Add 2 buttons -->
<button onclick="update(data1)">Data 1</button>
<button onclick="update(data2)">Data 2</button>
<!-- Create a div where the graph will take place -->
<div id="my_dataviz"></div>
<script>
// set the dimensions and margins of the graph
var width = 450
height = 450
margin = 40
// The radius of the pieplot is half the width or half the height (smallest one). I subtract a bit of margin.
var radius = Math.min(width, height) / 2 - margin
// append the svg object to the div called 'my_dataviz'
var svg = d3.select("#my_dataviz")
.append("svg")
.attr("width", width)
.attr("height", height)
.append("g")
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")");
// create 2 data_set
var data1 = {a: 9, b: 20, c:30, d:8, e:12}
var data2 = {a: 6, b: 16, c:20, d:14, e:19, f:12}
// set the color scale
var color = d3.scaleOrdinal()
.domain(["a", "b", "c", "d", "e", "f"])
.range(d3.schemeDark2);
// A function that create / update the plot for a given variable:
function update(data) {
// Compute the position of each group on the pie:
var pie = d3.pie()
.value(function(d) {return d.value; })
.sort(function(a, b) { console.log(a) ; return d3.ascending(a.key, b.key);} ) // This make sure that group order remains the same in the pie chart
var data_ready = pie(d3.entries(data))
// map to data
var u = svg.selectAll("path")
.data(data_ready)
// Build the pie chart: Basically, each part of the pie is a path that we build using the arc function.
u
.enter()
.append('path')
.merge(u)
.transition()
.duration(1000)
.attr('d', d3.arc()
.innerRadius(0)
.outerRadius(radius)
)
.attr('fill', function(d){ return(color(d.data.key)) })
.attr("stroke", "white")
.style("stroke-width", "2px")
.style("opacity", 1)
// remove the group that is not present anymore
u
.exit()
.remove()
}
// Initialize the plot with the first dataset
update(data1)
</script>
<script>
// set the dimensions and margins of the graph
const width = 450,
height = 450,
margin = 40;
// The radius of the pieplot is half the width or half the height (smallest one). I subtract a bit of margin.
const radius = Math.min(width, height) / 2 - margin;
// append the svg object to the div called 'my_dataviz'
const svg = d3.select("#my_dataviz")
.append("svg")
.attr("width", width)
.attr("height", height)
.append("g")
.attr("transform", `translate(${width/2}, ${height/2})`);
// create 2 data_set
const data1 = {a: 9, b: 20, c:30, d:8, e:12}
const data2 = {a: 6, b: 16, c:20, d:14, e:19, f:12}
// set the color scale
const color = d3.scaleOrdinal()
.domain(["a", "b", "c", "d", "e", "f"])
.range(d3.schemeDark2);
// A function that create / update the plot for a given variable:
function update(data) {
// Compute the position of each group on the pie:
const pie = d3.pie()
.value(function(d) {return d[1]; })
.sort(function(a, b) { return d3.ascending(a.key, b.key);} ) // This make sure that group order remains the same in the pie chart
const data_ready = pie(Object.entries(data))
// map to data
const u = svg.selectAll("path")
.data(data_ready)
// Build the pie chart: Basically, each part of the pie is a path that we build using the arc function.
u
.join('path')
.transition()
.duration(1000)
.attr('d', d3.arc()
.innerRadius(0)
.outerRadius(radius)
)
.attr('fill', function(d){ return(color(d.data[0])) })
.attr("stroke", "white")
.style("stroke-width", "2px")
.style("opacity", 1)
}
// Initialize the plot with the first dataset
update(data1)
</script>
Wondering what chart type you should use? Check my
Data To Viz project! It is a
comprehensive classification of chart types organized by data
input format. Get a high-resolution version of the decision tree in your
inbox now!